
Beam Stability Requirements for 4th Generation 
Synchrotron Light Sources Based on MBA Lattices
Christoph Steier, ALS-U Accelerator Systems Lead, LBNL
1st BES Light Sources Beam Stability Workshop, November 1, 2018



Outline
• Introduction
• Requirements
– Changes for MBAs

• Examples
– Photon Beamlines
– Stability measures / 

feedbacks
• Beamsize / Emittance
• Summary

2



Introduction
• Often stability can be more 

important to SR users than 
brightness + flux

• Important argument in 
comparison to SASE FELs 
and potential ERLs

• Stability requirements have 
evolved and there are some 
differences for MBA rings

• Requirements are 
beamline/experiment 
specific and more effort will 
be needed in future to 
optimize integrated systems
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• All of those requirements either directly 

specify or relate back into stability 

requirements

• beam position + angle, beamsize + 

emittance, beam energy, beam 

energy spread, … 

• For current SR sources, this means 

submicron orbit stability (for MBAs 

in both planes)

• However, requirements are experiment 

specific and MBAs bring some 

changes

Typical requirements of 3rd

generation SR user experiments 
(~2010):

Measurement parameter Stability Requirement

Intensity variation DI/I <<1% of normalized I

Position and angle <2-5% of beam s and s’

Energy resolution DE/E <10-4

Timing jitter <10% of critical time scale

Data acquisition rate 10-3 – 105 Hz

Requirements on 3rd gen Rings

44

Similar tables, see: 
Hettel, Boege, …



Requirements are beamline sensitive: Front to end simulation 
and optimization needed. Includes integrated control system 
access

Examples of sensitive Beamlines
• ALS micro-focusing

– Environmental samples (�dirt�)
– Very heterogenous
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• ALS STXM
– Zone-plate imaging 

using coherent fraction 
of beam
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• ALS magnetic 
spectroscopy

– Measuring very 
small dichroism 
effects

– Energy stability 
when switching 
polarization is 
critical

• NSLS-II X-ray nanoprobe
– Differential phase contrast imaging sensitive to angular stability
– Horizontal streaks are removed by stabilizing the x-ray beam using active 

beam positioning feedback. Yong Chu, Petr Ilinski
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Brightness / Coherent Fraction 
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fraction due to reduced horizontal emittance
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Changes for MBAs
• Imaging experiments will become more prevalent

– At ALS those are the more demanding experiments (STXM, 
ptychography)

• Time resolution (coherent flux, data rate, detector speed) will 
increase, making faster time scales more important
– Example of FTIR being especially sensitive to very small distortion if 

at unfavorable frequencies (~several kHz) – Does this extend to 
XPCS (which could go to MHz and beyond)

• Little change in beam parameters in vertical plane, horizontal 
plane becomes similar to vertical
– Vibration/noise levels not very different for hor/vert (usually a 

little larger in x)
– (lattice) amplification factors could change – for ALS-U seems to be 

small effect
• Synchrotron tune becomes (very) low

– Potential problems with orbit/multibunch feedbacks
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Changes for MBAs (2)
• Beam emittance will in some cases approach diffraction limit 

(or optics resolution limit) in which case stability goal will be 
somewhat relaxed
– We still often will deal with partially coherent beams and optics 

are constantly improving – might not help as much
– Again FTIR is cautionary tale (lock-in amplifier equivalent?)

• 2-5% goal was mostly based on experience in horizontal 
plane, where we were far away from optics resolution or 
diffraction limit
– New facilities typically start with more generic 5-10% goal now 

(relative to smaller emittances), but need to be aware that this 
might need to evolve/improve as optics and experimental 
techniques evolve

• Undulators will have larger effect on emittance/energy spread
• IBS will cause distortion from gaussian beam profiles 

(significant?)
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Practical, realizable, integrated conceptual 
design has been developed

Linac
(existing)

Booster
(existing)

Storage RingAccumulator Ring

Transfer Lines

RF System

Insertion Devices
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• Insertion device straights + beamlines stay in exactly the same place
• Arcs have different shape (9 vs 3 bends) – circumference 30 cm shorter



ALS-U: nine-bend achromat with reverse 
bendsALS today : triple-bend achromat

εx ≈  2000 pm-rad at 1.9GeV εx < 70 pm-rad at 2.0GeVεx ≈σ xσθ ∝
E 2

ND
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Nine-bend achromat lattice reaches the soft x-ray 
diffraction limit up to 1.5 keV

Large increase in coherent fraction due to lower emittance 
and smaller b-functions
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Examples how to achieve 
Requirements
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Stability / Design

• One hopefully starts by selecting a good / quiet site (not 
always possible) - at least need to know all caveats

• FEA allows optimization of slab design
• Important: Minimize vibration coupling from pumps, …
• Also keep external disturbances in mind (wind, sun, …)

Courtesy: N. Simos, 
NSLS-II
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Girder Design

• Some early 3rd generation sources had massive girders (low resonance 
frequencies – sampling larger ground oscillation amplitudes)

• Later ones had girders with higher resonance frequencies but movers, 
that significantly lowered them

• Newer designs (Soleil, NSLS-II, …) avoid this caveat – smaller vibration 
transmission to beam

ALS

Soleil NSLS-II: courtesy S. Sharma
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Air/water temperature stability

• Stable environmental conditions are extremely important
• State of the art is water and tunnel air temperature stability on the order 

of 0.1 degree C
• Stable power supply controllers, invar rods for BPM mounts, … also 

help, but it is always best to also keep the conditions constant
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Left: ALS water temperature, Right: Tunnel air temperature
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Commissioning results of new ALS 
AHU controls

15

October 
2018

ShutdownTime [days]

ShutdownShutdown

Interim state 
(old sensors)

AHU trip Beam dumps

Beam dumps
October 
2017

Time [days]



Orbit Feedback
• Even in extremely stable light sources, orbit feedback can 

always improve stability
• This is particularly true for the effects of insertion device 

motion (feed-forwards are never perfect)
• Nowadays, all light sources tend to use global orbit feedbacks 

with some variation of SVD (or direct matrix inversion) – local 
feedbacks are used less seldom

• Fundamentally, one only needs one (fast) orbit feedback, 
however, practical aspects often make using two more 
practical
– lack of enough fast corrector magnets, lack of strong enough 

corrector magnets, lack of enough suitable BPMs, differences in e-
beam/photon BPMs, …

– Can be solved in integrated/universal system as well – performance 
advantage?
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Fast orbit feedback topologies

• Many different types of fast orbit feedbacks are in use
• State of the art are systems with update rates up to 20 

kHz and closed loop bandwidths approaching 1 kHz
• In some systems, PID algorithms are supplemented by 

notch filters, …
– Other filter designs (predictive, …) could improve 

performance/robustness further
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BPM Trends: Low Noise, High Update Rate, low latency

• Digital front-end is same as NSLS-II
• Firmware, software, EPICS device support, 

analog front-end and pilot tone developed 
at the ALS.

70 nm daily rms noise (10 Hz bandwidth)  

Strong and effective 
collaboration with NSLS-II

18

Also need: fast power 
supplies, magnets, special 
vacuum chambers, … -
development is ongoing

Greg Portmann, 
Mike Chin, Eric 
Norum



Photon BPMs
• Synchrotron radiation is abundant in many accelerators – very useful 

for low noise, non desctructive position measurement

• Improved lever arm for angular errors of photon beams

• Sensitive to trajectory errors inside undulators

FMB
BESSY II,
ALS,
SLS,
LNLS

• Work very well for dipoles in 

the vertical plane

• For undulators OK for hard x-

rays

• with Decker distortions if 

undulators scan a lot

• Many improved solutions for 

hard x-rays

• GRID, …

• difficult for VUV, no good 

solution for EPUs, still
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Simple x-ray BPM for dipole 

beamline, which is broadly 

used.
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Example of Feedback Integration R+D - APS
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Courtesy: Bob Lill (APS/APS-U)



High Frequency / Multibunch Stability
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RF phase noise
• Mode 0 motion nowadays is very small – 0.03 degrees rms
• Dominated by noise from master oscillator, rf distribution system, rf frequency 

correction … not HVPS
– Fast RF amplitude feedback reduces effect of HVPS to this level

• Use improved master oscillator + filtering at several points in low level RF 
frequency distribution system

• Additional challenge for feedback systems when synchrotron tune drops into 
FOFB bandwidth – need to couple FOFB and RF feedbacks (PEP-II woofer)
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Instabilities / Feedback / HOMs

• Very fast stability / single+multibunch instabilities

• Routinely addressed by multibunch feedback system (longitudinal/transverse) – most 

recent ones all digital – with low synchrotron tune some overlap with FOFB

• HOM free cavities (SC or N/C) help, particularly longitudnally

• Transversely feedbacks can allow operation with small chromaticity

– Also can be used to increase TMCI threshold (ALS factor >4)

– Reduce duration of injection transients in top-off/swap-out

A. Blednykh

C. Stelmach

ALS TFB: W. Barry
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Beamsize Stability
• Because orbit stability is excellent, at ALS we actually receive more complaints 

about beamsize stability

• Problem is tougher at low energy light sources (beam less stiff)

• Main culprit at ALS are EPUs (elliptically polarizing undulators)

• Some examples of affected experiments:

– STXM (scanning transmission X-ray microscopes) – I0 normalization 

difficult, not included even in state-of-the-art beamlines

– Microfocus beamlines investigating heterogeneous samples

• What needs to be corrected:
— Optics distortion (beta functions)
— Skew gradients
— Potentially horizontal/vertical 

natural emittance
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Beta Beating Compensation can be complex (ALS-U)
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• Shown is local tune, phase advance, beta beating compensation 
for tune shift of W114, Dny = 0.035

• Within tuning range of magnet designs
• Acceptable dynamic and momentum aperture impact
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EPU effects on vertical beamsize
• Vertical beamsize variations 

due to EPU motion were big 
problem.

• Is caused by skew 
quadrupole (both gap and 
row phase dependent)

• Root cause reduced in 
newer devices

• Installed skew coils for 
feedforward correction

• Stability ~1% - deteriorates 
over time

• Recent tests of machine 
learning algorithms to 
reduce residual (Leemann, 
Hexemer) encouraging 

For reference: Whenever an undulator moves, about 
120-150 magnets are changed to compensate for the 
effect (slow+fast feed-forward, slow+fast feedback)
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MBAs and round (large coupling) beams

x [µm]

y 
[µ

m
]

−500 0 500
−500

0

500

x [µm]

y 
[µ

m
]

−500 0 500
−500

0

500

• If beam is truly diffraction 
limited, there is no benefit from 
vertical emittance being smaller 
than horizontal
– However, definition of 

‘diffraction limited’ usually is 
electron and diffraction 
emittance being equal, i.e. 25% 
coherent fraction (2 planes)

• Touschek lifetime, IBS, … would 
continue to get worse with 
smaller bunch volume

• Some user experiments (like 
diffractive imaging, STXM, …) 
work with round pinholes, 
would throw away flux if 
emittances are not equal



Methods to achieve large emittance ratios in MBAs
• Damping Wigglers
– Vertical DW
– Local vertical dispersion bump in DW

• Möbius Accelerator
• Betatron Coupling
– Equal fractional tunes
– Resonance Excitation (time dependent fields)

• Issues to consider: Complexity, Space, Total Emittance, 
Possibility of different injection schemes, Impact on 
nonlinear Beam Dynamics, Stability of Emittance

28



ALS-U example: Coupling Resonance

0 2 4 6 8 10 12 14 16

#10-5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

• Simulated operation on coupling 
resonance, with moderate 
coupling errors

• Result are almost equal 
emittances (60 pm in this case)

• Dynamic and momentum 
aperture are similar 
– Detuning with amplitude means that 

coupling at larger amplitude, where it 
matters for beam losses, does not 
really change

• If Jx > 1, emittance on coupling 
resonance is > ½ natural 
emittance
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Beamsize Stability on Coupling Resonance
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Peter Kuske

• For equal emittance, fairly
insensitive to coupling terms 
over wide range

• Dependence on tune not too 
steep for moderate coupling

• ALS example: tune stability 
with FF and tune FB

• Expect reasonable stability –
plan to test on ALS



Emittance Stability and Undulators

• DLSRs / MBAs / Rings with low average bend magnet field have Beamsize 
stability issue beyond coupling

• Significant variation of energy loss per turn results in variation of damping 
times, natural emittance, energy spread

• Extend of effect varies, but can be >20% (including machines already in 
operation)

• This does not just mean emittance goes down as more undulators are 
installed, also depends on undulator scans (larger field variation for longer 
period undulators – ALS: undulator energy loss varies 50% typical week)

• (Additional) Damping wigglers can help in correction, but expensive (cost, 
space, RF) – full range might not be feasible
– Other means are less efficient (e.g. limited tunability of MBA lattices)
– Need to better understand user requirements / impact of uncorrected or 

partially mitigated
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Max-4 example: S. Leemann, et al., PRSTAB 
12, 120701 (2009)



ALS-U example
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Sannibale, Venturini, Steier



Potential Solutions for ID induced emittance changes

• Potential mitigations for undulator induced natural emittance 
changes include:
– One (or multiple) variable gap wiggler can maintain a constant 

emittance but requires a dedicated wiggler.
– Dispersion bump in an existing fixed gap wiggler does not 

require a dedicated wiggler but requires knobs for the bump 
control, significant size bumps, and could affect beam dynamics.

– Small electron beam momentum variations could be used but 
they move dipole source points, shift photon energy and 
potentially challenges the ring dynamic aperture.

– Control by IBS requires significant bunch length shortening using 
harmonic cavities, affecting lifetime and stressing cavity tuning 
control.
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Outlook / Challenges
• Light source development continues to ever smaller emittances, i.e. 

tighter stability requirements (mostly horiz.)
• Improvements seem possible by treating accelerator + photon 

beamline as integrated system
• Photon BPMs work well for hard x-ray undulators (potentially with 

Decker distortions), not so well for VUV, still no good solution for 
EPUs

• Large number of fast switching insertion devices (EPUs, …) at 
low/intermedium energy light sources mean more perturbations

• Truly transparent top-off or swap-out injection is very difficult.
– Achieving similar relative stability when moving to high rep-rate FELs, 

or MBAs (with new injection methods) is feasible but difficult
• Swap out presents some new challenges compared to top-off
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A complementary view (NSLS-II)

Boris 10-31-18 

Some Bullets from NSLS-II Beam Stability 
Task  Force

• Absolute majority of NSLS-II beamlines are happy with presently provided e-beam 
stability [at ID source points: single digit microns/micro-radians pk-to-pk for long-term 
drift, <10% of beam size in V. (much smaller in H.) rms for short-term (0.1-5000 Hz) ].

• Studies with dynamic local bumps showed that our most sensitive beamlines could 
detect singe-digit micron or micro-radian orbit motions (but not sub-um/sub-urad!).

• These agree with SRW simulations (10% of beam size variation in pointing stability 
should not be noticeable at the sample compared to the effects due to typical beamline 
optics misalignments and surface imperfections). More true for DLSR?

• Beamline local feedbacks (which steer photon beam using mono XBPMs for position 
sensing and use piezo-driven mirrors and monochromator crystals as actuators) have 
performed superbly at HXN and CHX and their use is promoted throughout the facility. 
HXN reported ~10 nm positional stability on the sample.

• These feedbacks are crucial to remove photon beam disturbances coming from beamline 
elements, due to vibrations, heat loads, etc., (as well as small e-beam orbit residuals), 
even though beamline designs were heavily optimized for stability.

• Similar beamline feedbacks are greatly desired by our soft-XRAY beamlines, but this still 
requires R&D.  Most importantly, non-intercepting, coherence-preserving, soft-XRAY 
BPMs do not exist. This must be solved for soft-XRAY DLSRs!   
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Summary
• Stability Requirements for MBAs are generally an evolution of 3rd generation 

requirements
– More study might be needed to understand integrated accelerator/high performance 

beamline systems to refine requirements
– Requirements involve not just position/angle, also size, emittance, energy spread

• The number of imaging beamlines (especially using coherence) is expected to 
grow
– They tend to be more sensitive ones on current rings

• Relevant time domains will change for MBAs
– High coherent flux and faster undulators might extend in ns (or even ps) range

• MBAs can require larger emittance ratios than currently in use
– Multiple ways to achieve (including operating on coupling resonance)
– Beam dynamics impact manageable
– Beamsize stability requires good tune control, reasonable resonance strength 

• Insertion devices provide new challenge to emittance stability if they contribute 
significantly to total energy loss

• Good Photon BPMs for EPUs still not in hand
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Backup slides



Nonlinear Injection Kicker
• ALS is developing a nonlinear injection kicker

– Planned to be installed in January next to 6 mm stripline kicker
– Started design from earlier BESSY effort
– Application is both ALS and ALS-U accumulator

• Kicker / conductor geometry optimized by MOGA integrated 
with full injection efficiency calculation
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Stored Beam
kicker

Injected Beam

SeptumSeptum

Stored Beam

Injected Beam

Fast Kickerkicker1 kicker2 kicker3 kicker4

Septum

Injected Beam

Stored BeamStored Beam

Injected Beam
Swap-out enables:

• MBA lattices with smaller dynamic 
apertures à higher brightness

• Small round apertures à improved 
undulator performance

Bunch train swap-out with beam 
recovery in accumulator:

- Lower demand on the injector
- Very small (~nm) injected emittance

Off-axis injection + accumulation On-axis swap-out injection
(initially proposed by M. Borland)

requires larger
apertures

can use smaller
apertures

Specific ALS-U feature – Bunch train swap-out
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Delta 
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performance 
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Allows lattices with 
stronger focusing + 
higher brightness
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Storage-ring bunches 
transferred to accumulator
Accumulator bunches 
transferred to storage ring

New ALS 
storage ring

New 
accumulator 
ring

Fast kicker 
magnets


