

Beam Stability Requirements for 4th Generation Synchrotron Light Sources Based on MBA Lattices

Christoph Steier, ALS-U Accelerator Systems Lead, LBNL

1st BES Light Sources Beam Stability Workshop, November 1, 2018

Outline

- Introduction
- Requirements
 - Changes for MBAs
- Examples
 - Photon Beamlines
 - Stability measures / feedbacks
- Beamsize / Emittance
- Summary

Introduction

- Often stability can be more important to SR users than brightness + flux
- Important argument in comparison to SASE FELs and potential ERLs
- Stability requirements have evolved and there are some differences for MBA rings
- Requirements are beamline/experiment specific and more effort will be needed in future to optimize integrated systems

David Shapiro

Requirements on 3rd gen Rings

Typical requirements of 3rd generation SR user experiments (~2010):

Measurement parameter	Stability Requirement
Intensity variation $\Delta I/I$	<<1% of normalized I
Position and angle	<2-5% of beam σ and σ'
Energy resolution $\Delta E/E$	<10-4
Timing jitter	<10% of critical time scale
Data acquisition rate	10 ⁻³ – 10 ⁵ Hz

Similar tables, see: Hettel, Boege, ...

- All of those requirements either directly specify or relate back into stability requirements
 - beam position + angle, beamsize + emittance, beam energy, beam energy spread, ...
 - For current SR sources, this means submicron orbit stability (for MBAs in both planes)

However, requirements are experiment specific and MBAs bring some changes

Examples of sensitive Beamlines

ALS micro-focusing

- Environmental samples ('dirt')
- Very heterogenous

Figure 1. Synchrotron-based micro-X-ray radiation fluorescence (μ SXRF) Fe and Mn maps of the outermost Fe and Mn layers of a ferromanganese nodule from the Baltic sea (6600 μ m x 3780 μ m, step size 15 μ m, counting time 250 ms/pixel, red = Zn, green = Mn, blue = Fe, beamline: 10.3.2.). The onion-like structure of growth rims is clearly discernible as few hundreds μ m thick Fe/Mn-rich bandings. Zn is exclusively associated with Mn, as indicated by the orange color of the Zn-containing Mn layers, and its concentration increases towards the surface.

Matthew Marcus

BERKELEY LAB

• NSLS-II X-ray nanoprobe

- Differential phase contrast imaging sensitive to angular stability
- Horizontal streaks are removed by stabilizing the x-ray beam using active beam positioning feedback.
 Yong Ch

ALS STXM

 Zone-plate imaging using coherent fraction of beam

David Kilcoyne

- ALS magnetic spectroscopy
 - Measuring very small dichroism effects
 - Energy stability when switching polarization is critical

Yong Chu, Petr Ilinski

Brightness / Coherent Fraction

$$\varepsilon_r = \text{diffraction limited emittance} = \sigma_\gamma \sigma_\gamma' = \frac{\lambda}{4\pi} = \begin{cases} 80 \text{ pm } @ 1 \text{ keV} \\ 8 \text{ pm } @ 10 \text{ keV} \end{cases}$$

Brightness is inversely proportional to convolution of electron beam sizes and divergences and diffraction emittance

Coherent fraction = ratio of diffraction-limited emittance to total emittance $\nabla = -\frac{1}{2}$

$$f_{coh} = \frac{F_{coh,T}(\lambda)}{F(\lambda)} = \frac{\sigma_{\gamma}\sigma_{\gamma}}{\sigma_{Tx}\sigma_{Tx'}} \frac{\sigma_{\gamma}\sigma_{\gamma}}{\sigma_{Ty}\sigma_{Ty'}}$$

DLSRs produce photon beams with dramatically larger coherent fraction due to reduced horizontal emittance

Changes for MBAs

- Imaging experiments will become more prevalent
 - At ALS those are the more demanding experiments (STXM, ptychography)
- Time resolution (coherent flux, data rate, detector speed) will increase, making faster time scales more important
 - Example of FTIR being especially sensitive to very small distortion if at unfavorable frequencies (~several kHz) – Does this extend to XPCS (which could go to MHz and beyond)
- Little change in beam parameters in vertical plane, horizontal plane becomes similar to vertical
 - Vibration/noise levels not very different for hor/vert (usually a little larger in x)
 - (lattice) amplification factors could change for ALS-U seems to be small effect
- Synchrotron tune becomes (very) low
 - Potential problems with orbit/multibunch feedbacks

Changes for MBAs (2)

- Beam emittance will in some cases approach diffraction limit (or optics resolution limit) in which case stability goal will be somewhat relaxed
 - We still often will deal with partially coherent beams and optics are constantly improving – might not help as much
 - Again FTIR is cautionary tale (lock-in amplifier equivalent?)
- 2-5% goal was mostly based on experience in horizontal plane, where we were far away from optics resolution or diffraction limit
 - New facilities typically start with more generic 5-10% goal now (relative to smaller emittances), but need to be aware that this might need to evolve/improve as optics and experimental techniques evolve
- Undulators will have larger effect on emittance/energy spread
- IBS will cause distortion from gaussian beam profiles (significant?)

Practical, realizable, integrated conceptual design has been developed

Insertion device straights + beamlines stay in exactly the same place

Arcs have different shape (9 vs 3 bends) – circumference 30 cm shorter

9ALS

Nine-bend achromat lattice reaches the soft x-ray diffraction limit up to 1.5 keV

ALS today : triple-bend achromat bends 30 30 $\beta_{x,y}^{(m), \eta_x}$ (cm) $\beta_{x,y}$ (m), η_x (cm) 20 10 15 5 10 5 15 0 0 10 Position (m) 2000 pm rad at 1.9 GeV $\varepsilon_x \approx \sigma_x \sigma_\theta \propto \frac{E^2}{N_D^3}$ Position (m) pm rad at 2.0 GeV \mathcal{E}_{r} \mathcal{E}_{\cdot}

Large increase in coherent fraction due to lower emittance and smaller β -functions

ALS-U: nine-bend achromat with reverse

Examples how to achieve Requirements

Stability / Design

NSLS-II

- One hopefully starts by selecting a good / quiet site (not always possible) - at least need to know all caveats
- FEA allows optimization of slab design
- Important: Minimize vibration coupling from pumps, ...
- Also keep external disturbances in mind (wind, sun, ...

- Some early 3rd generation sources had massive girders (low resonance frequencies – sampling larger ground oscillation amplitudes)
- Later ones had girders with higher resonance frequencies but movers, that significantly lowered them
- Newer designs (Soleil, NSLS-II, ...) avoid this caveat smaller vibration transmission to beam

Air/water temperature stability

Left: ALS water temperature, Right: Tunnel air temperature

- Stable environmental conditions are extremely important
- State of the art is water and tunnel air temperature stability on the order of 0.1 degree C

Stable power supply controllers, invar rods for BPM mounts, ... also help, but it is always best to also keep the conditions constant

Commissioning results of new ALS AHU controls

Orbit Feedback

- Even in extremely stable light sources, orbit feedback can always improve stability
- This is particularly true for the effects of insertion device motion (feed-forwards are never perfect)
- Nowadays, all light sources tend to use global orbit feedbacks with some variation of SVD (or direct matrix inversion) – local feedbacks are used less seldom
- Fundamentally, one only needs one (fast) orbit feedback, however, practical aspects often make using two more practical
 - lack of enough fast corrector magnets, lack of strong enough corrector magnets, lack of enough suitable BPMs, differences in ebeam/photon BPMs, ...
 - Can be solved in integrated/universal system as well performance advantage?

Fast orbit feedback topologies

- Many different types of fast orbit feedbacks are in use
- State of the art are systems with update rates up to 20 kHz and closed loop bandwidths approaching 1 kHz
- In some systems, PID algorithms are supplemented by notch filters, ...
 - Other filter designs (predictive, ...) could improve performance/robustness further

BPM Trends: Low Noise, High Update Rate, low latency

Strong and effective collaboration with NSLS-II Also need: fast power supplies, magnets, special vacuum chambers, ... development is ongoing

- Digital front-end is same as NSLS-II
- Firmware, software, EPICS device support,
 analog front-end and pilot tone developed
 at the ALS.

Greg Portmann, Mike Chin, Eric Norum

Photon BPMs

- Synchrotron radiation is abundant in many accelerators very useful for low noise, non desctructive position measurement
- Improved lever arm for angular errors of photon beams
- Sensitive to trajectory errors inside undulators

- Work very well for dipoles in the vertical plane
- For undulators OK for hard xrays
 - with Decker distortions if undulators scan a lot
- Many improved solutions for hard x-rays
 - GRID, ...
- difficult for VUV, no good solution for EPUs, still

Example of Feedback Integration R+D - APS

Courtesy: Bob Lill (APS/APS-U)

High Frequency / Multibunch Stability

RF phase noise

- Mode 0 motion nowadays is very small 0.03 degrees rms
- Dominated by noise from master oscillator, rf distribution system, rf frequency correction ... not HVPS
 - Fast RF amplitude feedback reduces effect of HVPS to this level
- Use improved master oscillator + filtering at several points in low level RF frequency distribution system
- Additional challenge for feedback systems when synchrotron tune drops into FOFB bandwidth – need to couple FOFB and RF feedbacks (PEP-II woofer)

Instabilities / Feedback / HOMs

- Very fast stability / single+multibunch instabilities
- Routinely addressed by multibunch feedback system (longitudinal/transverse) most recent ones all digital – with low synchrotron tune some overlap with FOFB
- HOM free cavities (SC or N/C) help, particularly longitudnally
- Transversely feedbacks can allow operation with small chromaticity
 - Also can be used to increase TMCI threshold (ALS factor >4)
 - Reduce duration of injection transients in top-off/swap-out

Beamsize Stability

- Because orbit stability is excellent, at ALS we actually receive more complaints about beamsize stability
- Problem is tougher at low energy light sources (beam less stiff)
- Main culprit at ALS are EPUs (elliptically polarizing undulators)
- Some examples of affected experiments:
 - STXM (scanning transmission X-ray microscopes) I0 normalization difficult, not included even in state-of-the-art beamlines
 - Microfocus beamlines investigating heterogeneous samples

- What needs to be corrected:
 - Optics distortion (beta functions)
 - Skew gradients
 - Potentially horizontal/vertical natural emittance

Beta Beating Compensation can be complex (ALS-U)

- Shown is local tune, phase advance, beta beating compensation for tune shift of W114, $\Delta v_y = 0.035$
- Within tuning range of magnet designs
- Acceptable dynamic and momentum aperture impact

EPU effects on vertical beamsize

- Vertical beamsize variations due to EPU motion were big problem.
- Is caused by skew quadrupole (both gap and row phase dependent)
- Root cause reduced in newer devices
- Installed skew coils for feedforward correction
- Stability ~1% deteriorates over time
- Recent tests of machine learning algorithms to reduce residual (Leemann, Hexemer) encouraging

For reference: Whenever an undulator moves, about 120-150 magnets are changed to compensate for the effect (slow+fast feed-forward, slow+fast feedback)

MBAs and round (large coupling) beams

- If beam is truly diffraction limited, there is no benefit from vertical emittance being smaller than horizontal
 - However, definition of 'diffraction limited' usually is electron and diffraction emittance being equal, i.e. 25% coherent fraction (2 planes)
- Touschek lifetime, IBS, ... would continue to get worse with smaller bunch volume
- Some user experiments (like diffractive imaging, STXM, ...) work with round pinholes, would throw away flux if emittances are not equal

Methods to achieve large emittance ratios in MBAs

- Damping Wigglers
 - Vertical DW
 - Local vertical dispersion bump in DW
- Möbius Accelerator
- Betatron Coupling
 - Equal fractional tunes
 - Resonance Excitation (time dependent fields)
- Issues to consider: Complexity, Space, Total Emittance, Possibility of different injection schemes, Impact on nonlinear Beam Dynamics, Stability of Emittance

ALS-U example: Coupling Resonance

- Simulated operation on coupling resonance, with moderate coupling errors
- Result are almost equal emittances (60 pm in this case)
- Dynamic and momentum aperture are similar
 - Detuning with amplitude means that coupling at larger amplitude, where it matters for beam losses, does not really change

If Jx > 1, emittance on coupling resonance is > ½ natural emittance

Beamsize Stability on Coupling Resonance

Peter Kuske

- For equal emittance, fairly insensitive to coupling terms over wide range
- Dependence on tune not too steep for moderate coupling

- ALS example: tune stability with FF and tune FB
- Expect reasonable stability plan to test on ALS

Emittance Stability and Undulators

	ε_x [nm rad]		
	Without IBS	With IBS	
Bare lattice	0.326	0.453	
Bare lattice with LC	0.326	0.372	
Lattice with four PMDWs and LC	0.263	0.297	
Lattice with four PMDWs, ten IVUs, and LC	0.201	0.231	

Max-4 example: S. Leemann, et al., PRSTAB 12, 120701 (2009)

- DLSRs / MBAs / Rings with low average bend magnet field have Beamsize stability issue beyond coupling
- Significant variation of energy loss per turn results in variation of damping times, natural emittance, energy spread
- Extend of effect varies, but can be >20% (including machines already in operation)
- This does not just mean emittance goes down as more undulators are installed, also depends on undulator scans (larger field variation for longer period undulators ALS: undulator energy loss varies 50% typical week)
- (Additional) Damping wigglers can help in correction, but expensive (cost, space, RF) full range might not be feasible
 - Other means are less efficient (e.g. limited tunability of MBA lattices)
 - Need to better understand user requirements / impact of uncorrected or partially mitigated

ALS-U example

ALS Insertion Devices

Name	Alias	BL	New?	λ_u (mm)	BXmax(T)	BXmin(T)	$BY_{max}(T)$	BYmin (T)	No.
									periods
EPU50		4.0.2	No	50	0.58	0.1	0.8	0.1	37
QEPU90	MERLIN	4.0.3	No	90	0.78	0.06	1.18	0.06	20.5
U114		5.0.1	No	114	1.94	0.03	0	0	29
EPU38	COSMIC	7.0.1	No	38	0.89	0.11	0.67	0.11	44.5
EPU70	MAESTRO	7.0.2	No	70	1.18	0.07	0	0	26.5
U50		8.0.1	No	50	0.85	0.1	0	0	80
U100		9.0.1	No	100	0.98	0.05	0	0	43
U100		9.0.1	No	100	0.8	0.05	0	0	43
EPU50		11.0.1	No	50	0.85	0.1	0.57	0.1	36.5
EPU50		11.0.2	No	50	0.85	0.1	0.58	0.1	37
U80		12.0.1	No	80	0.8	0.07	0	0	55

Random ID gaps variation generates random beam radiated power variations.

$$< U_0 > = 18.5 \text{ keV}, \sigma_{U0} = 5.6 \text{ keV}$$

 $\Delta\epsilon/\epsilon \sim 7$ % (4 sigma)

Sannibale, Venturini, Steier

Potential Solutions for ID induced emittance changes

- Potential mitigations for undulator induced natural emittance changes include:
 - One (or multiple) variable gap wiggler can maintain a constant emittance but requires a dedicated wiggler.
 - Dispersion bump in an existing fixed gap wiggler does not require a dedicated wiggler but requires knobs for the bump control, significant size bumps, and could affect beam dynamics.
 - Small electron beam momentum variations could be used but they move dipole source points, shift photon energy and potentially challenges the ring dynamic aperture.
 - Control by IBS requires significant bunch length shortening using harmonic cavities, affecting lifetime and stressing cavity tuning control.

Outlook / Challenges

- Light source development continues to ever smaller emittances, i.e. tighter stability requirements (mostly horiz.)
- Improvements seem possible by treating accelerator + photon beamline as integrated system
- Photon BPMs work well for hard x-ray undulators (potentially with Decker distortions), not so well for VUV, still no good solution for EPUs
- Large number of fast switching insertion devices (EPUs, ...) at low/intermedium energy light sources mean more perturbations
- Truly transparent top-off or swap-out injection is very difficult.
 - Achieving similar relative stability when moving to high rep-rate FELs, or MBAs (with new injection methods) is feasible but difficult
 - Swap out presents some new challenges compared to top-off

A complementary view (NSLS-II) Some Bullets from NSLS-II Beam Stability Task Force

- Absolute majority of NSLS-II beamlines are happy with presently provided e-beam stability [at ID source points: single digit microns/micro-radians pk-to-pk for long-term drift, <10% of beam size in V. (much smaller in H.) rms for short-term (0.1-5000 Hz)].
- Studies with dynamic local bumps showed that our most sensitive beamlines could detect singe-digit micron or micro-radian orbit motions (but not sub-um/sub-urad!).
- These agree with SRW simulations (10% of beam size variation in pointing stability should not be noticeable at the sample compared to the effects due to typical beamline optics misalignments and surface imperfections). More true for DLSR?
- Beamline local feedbacks (which steer photon beam using mono XBPMs for position sensing and use piezo-driven mirrors and monochromator crystals as actuators) have performed superbly at HXN and CHX and their use is promoted throughout the facility. HXN reported ~10 nm positional stability on the sample.
- These feedbacks are crucial to remove photon beam disturbances coming from beamline elements, due to vibrations, heat loads, etc., (as well as small e-beam orbit residuals), even though beamline designs were heavily optimized for stability.
- Similar beamline feedbacks are greatly desired by our soft-XRAY beamlines, but this still requires R&D. Most importantly, non-intercepting, coherence-preserving, soft-XRAY BPMs do not exist. This must be solved for soft-XRAY DLSRs!

Summary

- Stability Requirements for MBAs are generally an evolution of 3rd generation requirements
 - More study might be needed to understand integrated accelerator/high performance beamline systems to refine requirements
 - Requirements involve not just position/angle, also size, emittance, energy spread
- The number of imaging beamlines (especially using coherence) is expected to grow
 - They tend to be more sensitive ones on current rings
- Relevant time domains will change for MBAs
 - High coherent flux and faster undulators might extend in ns (or even ps) range
- MBAs can require larger emittance ratios than currently in use
 - Multiple ways to achieve (including operating on coupling resonance)
 - Beam dynamics impact manageable
 - Beamsize stability requires good tune control, reasonable resonance strength
- Insertion devices provide new challenge to emittance stability if they contribute significantly to total energy loss
- Good Photon BPMs for EPUs still not in hand

Acknowledgments

- I have tried to incorporate input from many people (thanks for answering my request)
- I believe most input is mentioned, but in some cases very brief (and distributed among the slides)
- Thanks to: Peter Kuske, Laurent Nadolski, Nick Sereno, James Safranek, Jeff Corbett, Boris Podobedov, Timur Shaftan, Guimei Wang, Yuke Tian

Backup slides

Nonlinear Injection Kicker

- ALS is developing a nonlinear injection kicker
 - Planned to be installed in January next to 6 mm stripline kicker
 - Started design from earlier BESSY effort
 - Application is both ALS and ALS-U accumulator
- Kicker / conductor geometry optimized by MOGA integrated with full injection efficiency calculation

Specific ALS-U feature – Bunch train swap-out

Off-axis injection + accumulation

Swap-out enables:

- MBA lattices with smaller dynamic apertures → higher brightness
- Small round apertures → improved undulator performance

Bunch train swap-out with beam recovery in accumulator:

- Lower demand on the injector
- Very small (~nm) injected emittance

Permits higher performance polarizing undulators

Delta undulator (Cornell)